Smart Contract Proxy Analysis

Review Report

Tuesday 31°* May, 2022

The evolution of Smart Contract protocols both in respect to size and
complexity has led to the creation of new design patterns, centered around
modularity, maintainability and upgradeability. Many of these design
patterns such as the Proxy Upgrade pattern, or the Diamond pattern,
leverage delegatecall to implement their core functionality.

Current state-of-the art static analysis tools do not take into account the
unique intricacies of having shared mutable state across multiple smart
contracts, provided by the delegatecall opcode.

This study introduces a general technique for multi-contract analysis
under delegatecall , through the modularisation of the Gigahorse anal-
ysis framework and the propagation of storage facts between smart con-
tracts during analysis execution. Following this we present a new tool
called SOuL-Splitter, which generates multi-contract evaluation test sets
through automated decomposition of existing smart contracts.

Overall we find that our analysis technique is highly effective, with
some vulnerabilities exhibiting over a 70 point improvement in recall as
compared with their single contract counterparts.

1 Introduction

Ethereum [1] is a blockchain platform designed to support the execution of Turing
complete programs known as Smart Contracts, through the use of a “decentralised”
virtual machine called the Ethereum Virtual Machine (EVM).

Emerging design patterns in the Ethereum smart contract space, such as the Proxy
Upgrade or Diamond, are leveraging the delegatecall opcode to solve the scaling
concerns of modularity, maintainability and upgradeability.

Current analysis tooling has not yet caught up with developers, many of the state-
of-the-art tools (Securify [2], Oyente [3], Slither [4]) do not properly model the security
implications of delegatecall. This leaves developers leveraging delegatecall to
have an incomplete view of the possible vulnerabilities. This is especially important
for the complex call topologies used in the Diamond pattern, or in incompatibilities
between implementation versions for standard proxies.

Our work solves this gap in the static analysis space by modifying the Gigahorse
[5] analysis framework, and introducing a general technique for multi-contract anal-
ysis under delegatecall which leverages analysis componentisation. The original
contributions to the field can be summarised as follows;

* Generalised solution for multi-contract analysis implementation and adapta-
tion, including:

- Adaptation of the Ethainter [6] Taint Analysis
- Adaptation of the MadMax [7] Denial of Service Analysis
- Adaptation of Symvalic Analysis [§]

* Automated test set generation for multi-contract analysis evaluation

2 Background & Literature Overview

2.1 Ethereum, the EVM and Smart Contracts

The Ethereum Virtual Machine (EVM) is a stack based virtual machine with a 256-bit
word size, a stack size of 1024 elements, cheap non-persistent memory, and expensive
persistent storage [9]. The EVM provides standard opcodes for stack based virtual
machines, as well as blockchain specific opcodes such as sha3 or blockhash.

Smart contracts communicate internally through the use of the CALL family of op-
codes, which create a new execution context (stack and memory) for the target smart
contract and allow it to execute before returning control to the caller. During execu-
tion smart contracts read input from a special region known as the calldata buffer
and can return data from their own memory to the returndata buffer accessible by
the caller contract.

The primary opcode of interest for this study is the delegatecall [10] opcode,
which issues a transaction in which the callee contract executes with the state of the
caller contract, and all state modifications made are reflected back into the state of
caller.

2.2 Gigahorse

The Gigahorse [5] analysis framework used for this study is an EVM bytecode de-
compiler and binary lifter written in Souffle Datalog, designed to produce a high
level Three Address Code (TAC) and Datalog fact sets to support the implementation
of static analyses.

The binary lifting performed by Gigahorse revolves around the reversal of code
size optimisations performed by the Solidity compiler, as these optimisations cause
very complex control flow graphs which are not desirable for static analysis. The
primary mechanism used by the Solidity compiler for reducing code size is the reuse
of code chunks, this is achieved by creating jump points to common sequences of
instructions. One can draw an analogy between this and the LZ family of algorithms
for text compression [11].

2.2.1 Ethainter

Ethainter [6] is a taint analysis built on top of the Gigahorse framework, with the
specific goal of detecting privilege escalations or critical section manipulation.

For EVM bytecode the sources of external data are attributed to either a calldataload
or a calldatacopy. Critical code sections, or sinks, are defined as operations which
can transfer value, variables used in guards or the target of a delegatecall (which
allows for “code injection”).

Ethainter analyses the propagation of data from sources to sinks through unguarded
control flow paths. During analysis runtime the list of unguarded control flow paths
is not constant, as Ethainter can detect tainted guard variables and open new control
flow paths. The analysis defines a total of 11 rules of inference which are used to
determine tainted guards, storage reads/writes, and general tainted sinks. A further
6 rules of inference are defined to detect data structures.

2.2.2 MadMax

MadMax [7] was the first analysis written for the Gigahorse framework, with the
aim of detecting out-of-gas exceptions in Smart Contracts. Out-of-gas exceptions are
triggered by the EVM whenever a transaction sender sends insufficient funds to pay
for the gas used during the execution of the transaction.

The primary vulnerability of focus for this study is UnboundedMassOp. Un-
boundedMassOp detects the pattern of public methods which can monotonically in-
crease the number of items in an array, and another public method which iterates over
the same array. This pattern allows adversaries to launch a Denial of Service (DOS)
attack on the second function by writing arbitrary data into the array.

2.2.3 Symvalic Analysis

Symuvalic Analysis [8] is currently the most advanced analysis written on top of the
Gigahorse framework. It was written with the goal of bridging the completeness of
Static analysis with the precision of formal verification methods. This is achieved
through the utilisation of symbolic evaluation in combination with concrete values,
as well as the use of record tables to implement loose coupling between values.
Symvalic Analysis is not an analysis onto itself, rather it provides a high level
framework to implement analysis clients on top of. For the focus of this study the
analyses used will be limited to the Symvalic equivalents of Ethainter and MadMax.

3 Core & Implementation

3.1 Multi Contract Analysis

The final implementation for multi-contract analysis leverages Souffle components
to encapsulate analysis, and implements cross contract functionality through careful
propagation of storage related facts. This design allows for a well curated shared
state which increases the precision of the analysis, and supports the re-use of existing
analysis. Another benefit of this approach is the ability to tailor decompilation for
each contract in the analysis independently, with smaller contracts being more ag-
gressively in-lined and decompiled, and larger contracts which present scaling issues
being less aggressively decomplied.

3.1.1 Componentisation

The componentisation approach is best illustrated in listing [T, which shows Ethainter
being applied to two contracts. An assumption for this approach is that all the public
functions in each contract are reachable, if this is not the case then extra reachability
constraints can be added to any analysis.

3.1.2 Fact Propagation

Fact propagation is unique to every analysis, and requires the propagated facts to be
rooted in storage changes. This may require refactoring certain analysis to encapsu-
late storage changes better, however this has not been required in practice.

Ethainter can be converted in to a multi-contract analysis by propagation a single
relation, as shown in listing I} The relation GlobalVariableModifiableByAttacker
identifies storage locations which can be tainted by external sources. Sharing this
information is essentially introducing new taint sources to the other contracts, which
can lead to the discovery of more tainted storage locations.

#define MULTI_CONTRACT
#include "gigahorse-toolchain/souffle-addon/functor_includes.dl"

.comp Contract{
#include "ethainter.dl"

}

.init contractl = Contract
.init contract2 = Contract

contractl.GlobalVariableModifyableByAttacker (as(stmt,

- contractl.Statement), as(globalVal, contractl.Value)):-
contract2.GlobalVariableModifyableByAttacker (stmt,
— globalVal).

contract2.GlobalVariableModifyableByAttacker (as(stmt,

- contract2.Statement), as(globalVal, contract2.Value)):-
contractl.GlobalVariableModifyableByAttacker (stmt,
— globalVal).

Listing 1: Two Contract Ethainter Analysis

3.1.3 Automated Test Set Generation

In order to quantify the validity of the multi-contract analysis approach we needed
a test set of vulnerable multi-contract protocols. Unfortunately relying on real world
multi-contract exploits would not have produced a large enough evaluation set, as
such test set generation was required.

The approach taken for the evaluation metrics was to compare the multi-contract
analysis against its single contract counterpart. This was achieved by creating a new
tool called SOuL-Splitter, which takes smart contracts and decomposes their func-
tionality across multiple implementation smart contracts.

SOuL-Splitter works by generating an Abstract Syntax Tree (AST) for a solidity
source file and traversing it for public functions. Changing the visibility of all public
functions to internal essentially removes them in the bytecode as the Solidity com-
piler will perform dead code elimination. This “blank” slate is then used to generate
the new sub-contracts through selectively re-enabling functions, by setting their vis-
ibility level back to public. This process is currently performed for up to 15 public
functions after which functions are grouped together. A benefit to this approach is the
handling of mutually dependent public functions, as it allows for the generation of
sub-contracts where only one public function is visible at a time whilst still preserving
full functionality.

4 Evaluation

The evaluation of the multi-contract analysis was performed using the Smartbugs-
Wild contract dataset. The dataset contains over 47,398 real world contracts extracted
from the Ethereum mainnet, which were then converted into multi-contracts using
SOuL-Splitter introduced in section [3.1.3] Using this dataset as the ground truth, the
single and split versions of each analysis were run in order to generate the recall
scores. This method produced a dataset of 1026 contracts for MadMax, 1248 contracts

for Ethainter, and 1520 for Symvalic.

4.1 Results

Vulnerability Single Multi Missed Recall
OverflowLooplterator 468 468 0 100%
UnboundedMassOp 305 596 23 96.28%
WalletGriefing 98 98 0 100%

Table 1: Multi-Madmax Evaluation
Vulnerability Single Multi Missed Recall
AccessibleSelfdestruct 94 213 3 98.61%
TaintedDelegatecall 13 13 0 100%
TaintedERC20Transfer 2 2 0 100%
TaintedOwnerVariable 178 586 44 93.02%
TaintedSelfdestruct 58 144 1 99.31%
Tainted ValueSend 174 453 100 81.92%

Table 2: Multi-Ethainter Evaluation
Vulnerability Single Multi Missed Recall
AccessibleSelfDestruct 156 156 0 100%
CallToTaintedFunction 9 45 1 97.83%
Griefing 67 67 0 100%
Reentrancy 27 112 3 97.39%
TaintedDelegateCall 5 5 0 100%
TaintedOwnershipGuard 17 17 0 100%
TaintedSelfDestruct 29 29 0 100%
UnboundedIteration 403 1182 20 98.34%

Table 3: Multi-Symvalic Evaluation

4.2 Discussion

The results for Madmax at first appear somewhat underwhelming, however it should
be noted that the UnboundedMassOp is the only vulnerability that is possibly de-
pendent on multiple public functions. Taking UnboundedMassOp on its own shows
a roughly 63 point improvement for multi-contract analysis over split-single contract
analysis.

Most the results of multi-contract Ethainter are extremely promising, with four of
the six analyses improving at least 60 points. The result for TaintedOwnerVariable
is the most promising, with an over 70 point improvement in recall. TaintedVal-
ueSend shows a significant decrease in recall, however this is can be attributed to
the increased precision rather than a limitation of the multi contract approach. Ex-
amining 10 of the 44 missed TaintedOwnerVariable reveals that all the contracts
were false positives, as they leverage an extra function call in their modifier guards
which is known to cause problems with the analysis. The simplified Control Flow
Graphs (CFGs) in the split contracts allowed for better inlining which removed the
function call, and allowed the analysis to detect the guard.

The results for Symvalic are extremely promising, with its equivalent of Unbound-
edMassOp exhibiting a 72 point improvement, almost 10 points more than its non
symbolic counterpart. Symbolic re-entrancy is another very promising result, espe-
cially within the context of the other multi-contract analysis Clairvoyance [12] being
solely limited to this. The symbolic equivalents to Ethainter are less promising in this
result set, however it should be noted that this test set was limited to a 6 contract split
rather than the 15 contract split used in the other evaluations. The change in splitting
came down to a scalability problem with the compiler, as Symvalic analysis is sig-
nificantly more complex than previous analysis. The compiled binary for 6 contract
Symvalic analysis is roughly on par with 15 contract Ethainter, with respect to size
and compilation time.

5 Conclusion

We presented a generalised approach towards multi-contract analysis under delegatecall,
within the context of the Gigahorse analysis framework and the Souffle language.

The main criticism of this body of work is its limitation to an artificial dataset, and
re-evaluation of this approach with real world contracts should better highlight its
strengths and weaknesses.

The next steps for this analysis technique are in its application to real world con-
tracts, as well as testing uni-directional fact propagation for standard proxy upgrades.
Following this another key research area is determining how to extend this technique
to standard calls, which would enable enhanced precision for analysis through the
propagation of calldata.

Overall the componentisation technique proves to be a simple, yet impressively ef-
fective, method of converting existing single contract analysis to multi-contract anal-
ysis.

References

(1]

[2]

3]

[4

[5

[6]

[7]

[8

[9]

[10]
[11]

[12]

V. Buterin, “A next-generation smart contract and decentralized application platform,” Ethereum White Paper, 2013.
[Online]. Available: https://ethereum.org/en/whitepaper/

P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Biinzli, and M. Vechev, “Securify: Practical security analysis
of smart contracts,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS "18. New York, NY, USA: Association for Computing Machinery, 2018, p. 67-82. [Online]. Available:
https://doi.org/10.1145/3243734.3243780

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Oyente: Making smart contracts smarter,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, ser. CCS
‘16. New York, NY, USA: Association for Computing Machinery, 2016, p. 254-269. [Online]. Available:
https://doi.org/10.1145/2976749.2978309

J. Feist, G. Greico, and A. Groce, “Slither: A static analysis framework for smart contracts,” in Proceedings of the 2nd
International Workshop on Emerging Trends in Software Engineering for Blockchain, ser. WETSEB "19. IEEE Press, 2019,
p- 8-15. [Online]. Available: https://doi.org/10.1109/WETSEB.2019.00008

N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis, “Gigahorse: Thorough, declarative decompilation of smart
contracts,” in Proceedings of the 41st International Conference on Software Engineering, ser. ICSE '19. IEEE Press, 2019,
p- 1176-1186. [Online]. Available: https://doi.org/10.1109/ICSE.2019.00120

L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis, “Ethainter: A smart contract security analyzer
for composite vulnerabilities,” in Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI 2020. New York, NY, USA: Association for Computing Machinery, 2020, p. 454—469.
[Online]. Available: https://doi.org/10.1145/3385412.3385990

N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis, “Madmax: Analyzing the
out-of-gas world of smart contracts,” Commun. ACM, vol. 63, no. 10, p. 87-95, sep 2020. [Online]. Available:
https://doi.org/10.1145/3416262

Y. Smaragdakis, N. Grech, S. Lagouvardos, K. Triantafyllou, and I. Tsatiris, “Symbolic value-flow static analysis:
Deep, precise, complete modeling of ethereum smart contracts,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA, oct
2021. [Online]. Available: https://doi.org/10.1145/3485540

G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum yellow paper, 2021. [Online].
Available: https:/ /ethereum.github.io/yellowpaper/paper.pdf

V. Buterin, “Eip-7: Delegatecall,” 2015. [Online]. Available: https://eips.ethereum.org/EIPS/eip-7.

Welch, “A technique for high-performance data compression,” Computer, vol. 17, no. 6, pp. 8-19, 1984.

Y. Xue, M. Ma, Y. Lin, Y. Sui, J. Ye, and T. Peng, “Cross-contract static analysis for detecting practical reentrancy
vulnerabilities in smart contracts,” in Proceedings of the 35th IEEE/ACM International Conference on Automated Software

Engineering, ser. ASE 20. New York, NY, USA: Association for Computing Machinery, 2020, p. 1029-1040. [Online].
Available: https://doi.org/10.1145/3324884.3416553

https://ethereum.org/en/whitepaper/
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1145/3385412.3385990
https://doi.org/10.1145/3416262
https://doi.org/10.1145/3485540
https://ethereum.github.io/yellowpaper/paper.pdf
https://eips.ethereum.org/EIPS/eip-7
https://doi.org/10.1145/3324884.3416553

	Introduction
	Background & Literature Overview
	Ethereum, the EVM and Smart Contracts
	Gigahorse
	Ethainter
	MadMax
	Symvalic Analysis

	Core & Implementation
	Multi Contract Analysis
	Componentisation
	Fact Propagation
	Automated Test Set Generation

	Evaluation
	Results
	Discussion

	Conclusion

