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1 Introduction

These are the course notes for ICT3009, covering the Ethereum and Smart Contracts part
of the course. You should have already covered the Bitcoin part of the course with Dr.
Neville Grech.

Some of the material we will be covering depends on concepts which will be explained
later in the notes. When this occurs, we will denote this by the following icon ¬. When
you come across this symbol, skim over the concept as we will return to it later.
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2 Ethereum

Ethereum was conceptualised in 2013 by Vitalik Buterin, as a world-computer. Un-
like Bitcoin, which is useful to transfer value but has only limited scripting facilities,
Ethereum was supposed to support a Turing complete language which could be used to
write Dapps1 which could run on the blockchain.

The formal specification of Ethereum is defined in the Yellow Paper2, which is periodically
updated to reflect the current Ethereum version. However this is not always up to date
and the canonical resource is the Specification for the Execution Layer3. As of the 13th
March 2024, we are on the Cancun-Deneb hard fork.

Figure 1: The currently available Yellow Paper is for Shanghai-Capella and is out of
date.

1Dapps stands for Distributed Applications.
2https://ethereum.github.io/yellowpaper/paper.pdf
3https://github.com/ethereum/execution-specs
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Like Bitcoin, Ethereum has its own native token, which is called Ether, also referred to
as ETH. The smallest unit of ETH is the Wei, which is 1 × 10−18 ETH. Therefore 1 ETH
= 1 × 1018 Wei. ETH is crucial to the correct functioning of Ethereum. As in Bitcoin, it
is a way of rewarding validators for adding blocks to the network (and sometimes to
punish them!). It is also a way for paying for computation which is performed on the
blockchain on your behalf.

You can obtain ETH by participating in the Ethereum network, or by buying it on the
open market. As of the time of writing 1 ETH = 2624.64$.

2.1 Accounts

The first concept in Ethereum which we will consider is called an account. There are two
types of Ethereum accounts:

• Externally Owned Accounts (EOA) - These are owned by a user and controlled
through a private key known only to that user. They can keep a balance of ETH
and are able to start transactions.

• Contract Accounts (CA) - These are owned by a smart contract and contain code
which can be executed in response to transactions. They can keep a balance of
ETH but are not able to start transactions on their own. They do not have a private
key associated to them.

Both kinds of account have an address, which uniquely identifies the account on the
blockchain.

As a user, you can create an EOA by generating a random 256-bit random number, which
will be your private key. Using Elliptic Curve Cryptography (secp256k1), it is possible
to obtain a public key from this private key. The address of the account is then simply
the last 20 bytes of the Keccak256 hash of the public key. This means that addresses in
Ethereum are always 20 bytes (160-bits) long.

In order to initiate a transaction, you have to sign it with the private key of your account.
The implication of this is that if your private key is leaked, anyone will be able to sign
transactions on your behalf (probably to empty it of ETH)! Each EOA has a nonce which
keeps track of the number of transactions that the EOA has initiated. 4

Unlike an EOA, Contract Accounts do not have a private key. Their address is deter-
mined when the corresponding smart contract is deployed to the blockchain by an EOA5

4The nonce is also required to prevent replay attacks.
5This is called a CREATE operation. There is also the CREATE2 operation, which allows the contract to be

deployed at a deterministic address. The CREATE2 operation can only be used by a contract.
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This address will be a function of the address of the deployer and its nonce. A smart
contract also has its own nonce, but in this case it keeps track of how many other smart
contracts our smart contract has deployed.

2.2 Transactions

As we said earlier an EOA can initiate a transaction by signing it using its private key.
There are four core transaction types in Ethereum:

• Simple Transaction - this allows an account to transfer ETH to another EOA.

• Message Call Transaction - this allows an account to invoke a function on a given
smart contract.

• Contract Creation Transaction - this allows an account to deploy a smart contract,
and give it an endowment of ETH if required.

A transaction can have a number of fields:

• Nonce - This corresponds to the current nonce of the account and acts as an
identifier for the transaction. It also helps with replay protection.

• To address - The address we are sending the transaction to. This will be empty for
a contract creation transaction.

• Value - The amount of ETH that we are sending, if any.

• Signature - An ECDSA signature confirming our identity. The signature contains
three pieces of information called V,R and S. The receiver can recover the sender of
the transaction from these items using the ECRECOVER operation.

• Data - If we are calling a smart contract, this is where we mention the function to
be called and list its parameters. In case of a contract creation transaction, this is
where we provide the code we want to deploy. In reality this is the bytecode of a
smart contract output by a compiler.

• Gas Price - The amount of Wei we are willing to pay per unit of gas. ¬

• Gas Limit - The maximum amount of gas we want to consume before aborting the
transaction. ¬

Aside from the above three types of core transactions, other kinds of transaction have
been introduced through various Ethereum Improvement Proposals (EIPs).



ICT3009: Blockchain and Smart Contracts 8

2.3 Ethereum State

Ethereum can be seen as a giant state machine. The blockchain starts in its genesis6 state,
and moves between states via its users initiating transactions, such as sending ETH, and
deploying or interacting with smart contracts.

The global state of Ethereum at any given time is known as the world state of the network,
and is simply the current state of all of its accounts. The world state is stored inside
the state trie, and a node inside this trie is called an account state. All of the actions we
mentioned previously cause updates to this state trie.

An account state keeps track of the state of an individual account. This means that it
needs to store the account’s nonce and its ETH balance. In addition if the account is a
CA, it has to keep track of its contract storage and its code.

Now, every CA keeps its storage in a separate storage trie, which is like a key-value store
for that smart contract. Inside the account state we keep a storageRoot, which is a hash of
the root node of its storage trie. We also keep a codeHash, which is a hash of its bytecode.
These two hashes allow efficient retrieval of the storage and bytecode when needed.

2.4 EVM

In the previous section we said that transactions cause Ethereum to move from one state
to another. The new state is the result of a computation carried out by the Ethereum
Virtual Machine (EVM).

The EVM is a stack-based machine which is capable of executing the bytecode held
within a CA. The EVM operates as a sandboxed envrionment for security purposes and
is not able to interact with external systems.

The word size7 of the EVM is 256-bits (32 bytes) and the bytes are encoded in Big Endian
order8. The EVM has no registers, but instead operates on a stack, which can be 1024
words deep.

Unlike Bitcoin Script, the EVM is Turing complete, because it is able to handle sequential
execution, conditional statements, and most importantly unbounded iteration. This
introduces the possibility of non-termination, which is limited in practice by the concept
of gas. If too much gas is consumed, the computation will abort with an error. ¬

6In general, the genesis state of blockchains is empty, however a genesis file is often used to allocate funds
to early users to enable easier use of the network.

7This is the largest amount of bits the EVM can manipulate at a time.
8This means that the most significant byte appears at index zero.
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The EVM has 4 data locations from which data can be read from and written to:

• Memory - This is a temporary storage space which is available during program
execution. It is organised as a word-addressed byte array. When reading from
memory, one has to read 256-bits (one word) at a time9, but when writing to it,
one can either write 256-bits or 8-bits at a time10. Memory is unlimited, but if you
exceed a certain threshold, the cost of manipulating it becomes quadratic in the
size of the memory allocated.

• Storage - This is a permanent storage space which is stored on the blockchain. It is
organised as a key-value store, where both keys and values are 256-bits long. It is
possible to both write and read words from storage11. Every CA account on the
blockchain has a separate storage space for security, and this storage space is not
accessible by other CA accounts.

• Stack - This is a storage space used to carry out computations during a transaction,
and is cleared after the transaction has ended. It is organised as a last-in-first-out
(LIFO) data structure with a maximum depth of 1024 words.12.

• Calldata - This is the storage space where the data provided by the transaction is
held. It is a read only storage space.

In addition to the above, the EVM has access to 2 other areas:

• Code - This is a read only space which holds the bytecode which has been deployed
to the blockchain.13.

• Logs - This is a write only space where the EVM can output logs related to the
execution of the code.

Initially, all storage and memory is set to zero.

When the EVM wants to execute some bytecode in response to a function being called, it
will retrieve the bytecode which needs to be executed. It will then execute the bytecode
instructions, using a program counter to keep track of where it has arrived. Whilst
executing instructions, it will use the stack to temporarily store parameters and return
values. It can also read and write to memory and storage, and can also output logs.
Inputs to the function being executed are accessible through the calldata, and a return
value can be provided to the callee of the function through a region of memory called

9This is achieved through the MLOAD operation
10This is achieved through the MSTORE and MSTORE8 operations
11This is achieved through the SLOAD and SSTORE operations.
12The stack is manipulated through PUSH and POP operations.
13For advanced tasks, code can be copied into memory through CODECOPY and EXTCODECOPY opera-

tions.
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the returndata. During the execution of instructions, the EVM will keep track of the gas
consumed. If it runs out of gas, the computation will be aborted. ¬

2.5 Blocks

In the Ethereum network, there are a number of nodes, called validators which have the
power to add blocks to the blockchain14. Approximately every 12 seconds, the network
will choose which validator gets to add such a block. ¬

The validator maintains a mempool15, which consists of a number of user transactions
which were seen by the validator after being shared on the network using a gossip
protocol.

It will then choose a number of these transactions, and assemble them into a block, before
proposing to add the block to the blockchain. The block has a finite amount of space,
which is limited by the maximum amount of computation which can be carried out in a
single block. This maximum is called the block’s gas limit16.

When submitting a transaction, a user will specify a certain amount of fees to be paid
to the validator17 ¬. A rational validator will start including the transactions from its
mempool which guarantee it the highest fees, until it either reaches the gas limit, or
there are no more transactions left in its mempool.

A validator does not have an unlimited amount of time to propose their block, as the
network requires new blocks to be proposed within tight windows to maintain the
timeliness of the network. Therefore producing a valid block which maximises rewards
is an important optimisation problem.

A block in Ethereum consists of a header and a body. The most important fields in the
header are the following.

• parentHash - The hash of the previous block’s header. This links the current block
to its predecessor, forming the blockchain.

• beneficiary - The validator who will get the reward for adding a block.

• stateRoot - The hash of the root of the world state trie after executing the transac-
tions in a block. This is essentially a summary of Ethereum’s state after the block
has been added to the blockchain.

14As we shall see they can also vote on the validity of blocks on the blockchain.
15This is also known as a transaction pool.
16This is different from the transaction’s gas limit specified by the user. ¬
17As we shall see this is made up of two components, the fee and the gas cost.
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• transactionRoot - The hash of the root of the transactions in the block, organised as
a trie. This provides an easy way to verify the integrity of the transactions in the
block.

• receiptsRoot - The hash of the root of the receipts of the transactions in the block,
organised as a trie. The receipts are data structures which contain information
about the execution of the various transactions, such as gas usage, status and logs.

• number - The block’s number.

• gasLimit - The block’s gas limit, as described above.

• gasUsed - The total amount of gas which was consumed to execute all the transac-
tions in the block. ¬

• timestamp - The Unix timestamp of when the block was proposed by the validator.

In the body of the block we find a list of transactions which were included in the block.

The first block of the Ethereum blockchain is called the Genesis block. This block is
special because it is hardcoded into Ethereum. All subsequent blocks were added
through either mining18 or through validators proposing blocks19.

Once a validator has proposed a block, it will share it with the other Ethereum validators
in the network. The other validators will validate the block by checking its integrity. The
most basic integrity checks involve checking that the block references a valid parent and
that the timestamp satisfies certain constraints. In particular the timestamp should be
higher than the one found in the parent block, and less than 15 minutes in the future
from the latter.

Following this the transactions will be checked for consistency. This process involves
taking the list of transactions included in the block, and re-executing them on the
new validator node. The transactions are organised into a transaction trie, the receipts
are organised into a receipts trie, and the updated world state into an updated state
trie. The roots of all these three tries are then hashed and compared with the block’s
transactionRoot, receiptsRoot and stateRoot. If they match, then we know that the
original validator did not attempt to trick us, and we can accept the block by writing
the new transaction, receipt and state tries to the local blockchain database of the new
validator.

18Before Ethereum moved to Proof-of-Stake, blocks were mined in a way similar to Bitcoin.
19Ever since The Merge hard fork took place on the 15th of Sepetember 2022.
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2.6 Gas

Earlier we saw that in order for a validator to include a transaction in a block, the user
has to pay the validator a fee. If the fee paid is too low, the transaction may be left in the
mempool and not be picked up as a result.

In addition to this fee, Ethereum uses the concept of gas to keep track of how much
computation was performed during a transaction. This is a cost which must also be paid
in order to ensure that the transaction is executed.

If the computation is very complex or is too long, we may experience an out of gas
condition, leading to our transaction being aborted. When a transaction is aborted, it is
still included in a block as a failed transaction. The miner still gets paid, and the user
does not get any refund.

One reason for using gas is to stop computations from entering infinite loops and not
terminating.

When the a user invokes a function of a smart contract, the EVM will execute the
bytecode corresponding to that function. Each instruction which is executed has a fixed
gas cost. The gas used to execute the function is the sum of the gas costs of the individual
instructions for that function. For example calling the function mint() on a smart contract
may cost 1000 gas.

Now, the gas used is just an integer, but the gas fee has to be paid in ETH. How do we
know how much ETH we have to pay for the 1000 units of gas we consumed?

The answer is that we decide how much a unit of gas is worth to us. So for example,
we may decide that we are ready to pay 25 Wei for 1 unit of gas. This means that the
computation will cost us 25 ∗ 1000 = 25000 Wei. In general the formula to calculate the
gas fee is the following:

Gas Fee = Gas Used × Gas Price

What is stopping us from paying the bare minimum for gas? The gas price is the reward
we are giving to the validator for executing our instructions. If someone provides a
higher gas price than us, the validator will prefer to execute their transaction rather than
ours.

This means that submitting transactions involves competing in an auction for limited
block space. As long as the validator is rational, it will include the transactions with the
highest fees and gas price first, because this maximises its returns. If it runs out of block
space, the transaction has to wait for the next block for a chance to be included.
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One side effect of this is that there can be periods of high network congestion where
most transactions cannot be executed because the gas price is not viable. Similarly in
periods where not much is going on on the blockchain, transactions can be executed for
a minimal gas price.

One possible way of reducing high gas fees is to have larger blocks, or to produce blocks
quicker. However there are always trade offs. These adjustments mean that validators
would need to run more powerful machines. As a result less people will participate in
validating blocks and the network becomes less secure. There are other ways to scale
blockchains, such as so-called Layer 2 solutions20. We will mention some of these later if
we have the time.

2.7 Consensus

The Ethereum network consists of many validators, and these validators have to reach a
consensus about what the current blockchain state is at any point in time. We are now in
a position to discuss how this consensus is reached on Ethereum.

We will first mention briefly that Ethereum originally reached consensus through a
Proof-of-Work algorithm similar to the one used in Bitcoin, which was called Ethash. The
major difference from Bitcoin was that Ethash was supposed to be ASIC-resistant, which
means that people with specialised hardware could not get an advantage over users
who were running commodity hardware. This would allow greater participation and
hence greater security for the network. However, ASIC chips were eventually created
for mining Ethereum as well. In addition to this, Proof of Work is a very wasteful and
resource intensive algorithm and this was another reason why Ethereum changed its
consensus algorithm to Gasper, which is a Proof-of-Stake algorithm.

The Gasper protocol consists of two parts, called Casper and LMD-GHOST respectively.

2.7.1 Casper

Under Casper, the Ethereum network is organised into a number of validators. In
principle, this network is permissionless, in the sense that anyone can join the network
as a validator by running the Ethereum software. Validators are able to both propose new
blocks, as well as attesting (validating) blocks proposed by other validators. Validators
can earn ETH for proposing new blocks as well as for attesting to blocks correctly.

Casper organises block production into epochs, where each epoch has 32 slots and each
slot takes 12s. At the start of each epoch, some randomness is generated using the

20These have an off-chain component and include rollups and sidechains.
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RANDAO algorithm. During each slot, a single validator is chosen randomly. This
validator is tasked with proposing a new block and broadcast it to other nodes.

This block is not attested by every validator on the network. Rather, during each epoch,
the validators are randomly split into 32 groups (1 for each slot). Each group of validators
will be attesting the blocks for that slot, which means that each block will be attested by
1
32 of the total number of validators.

Figure 2: One epoch has 32 slots. Each slot is 12 seconds long.

In order to reduce network congestion21, not every validator transmits his attestation
to the other nodes in the network. Instead, each group attesting a slot is divided into
64 committees, with each committee having a minimum of 128 validators. During each
epoch, an aggregator is chosen from each committee. It is the job of this aggregator
to collect all attestations in this committee, aggregate the signatures and broadcast the
aggregated message to the wider network. The proposer will assemble these aggregated
attestations and include them in the new block.

In order to keep validators honest, Casper requires validators to lock up (stake) exactly
32 ETH before being able to participate in the network.

Validators which are dishonest or negligent can lose part of their staked ETH. Validators
which go offline are penalised and suffer a reduced balance. Validators which are dishon-
est are slashed, which means that part of their funds are burned and that they are ejected
from the validator committee.

Validators can be slashed if they commit one of the following dishonest behaviours:

• They propose and sign two different blocks during the same epoch.

• They sign two conflicting attestations (for and against the block)

• They attest to one version of the chain, then attest to a different version of the chain
¬

This arrangement ensures that validators fulfill their functions and makes it very expen-

21This was not needed in Bitcoin, because only the node which finds the block needs to communicate with
the other nodes. In Ethereum’s case, the validators also need to communicate with one another to attest
the blocks, which increases network traffic.
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Figure 3: The group validating each slot is divided into committees to reduce commu-
nication overheads. An aggregator is just a normal validator which has been
tasked with broadcasting the aggregated attestations for the duration of the
slot.

sive for validators to attack Ethereum, as malicious validators become poorer with every
attack.

Validators also fulfill another important function in that they attest that certain blocks
have been finalized. A finalized block is a block which has permanently become part of
the main blockchain and is irreversible to all intents and purposes.

Finalization, is achieved through a part of Casper called Casper-FFG22, which works as
follows.

To participate in the network, validators have to stake exactly 32 ETH. When a validator
attests to a block, the validator is essentially voting for that block using the amount of
ETH which it has staked.

Now, the last block of every epoch is called a checkpoint block. Validators will examine
pairs of successive checkpoint blocks and attest them if they are valid. Once a checkpoint
block has been voted for by validators holding 2

3 of the total staked ETH, it becomes
justified. Justified blocks are considered stable, but can still be reverted. Once the
subsequent block has been justified as well, the prior block becomes finalized. A finalized
block is considered irreversible. Once a checkpoint is finalized, its epoch is considered
finalized as well.

In order for a finalized block to be reversed, more than 1
3 of the ETH possessed by the

22Casper-FFG stands for Casper the Friendly Finality Gadget.
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Figure 4: Initially, the checkpoint block of epoch 1 is justified. Once the checkpoint
block of epoch 2 receives 2

3 of the votes, it becomes justified as well, and the
preceding block becomes finalized.

validators would have to be put at risk of slashing. This is an incredibly improbable
scenario.23

One concern is that since finalizing epochs requires a 2
3 majority of votes, an attacker

which controls 1
3 of the votes could stop the chain from finalizing. In order to ensure the

liveness of the chain, if the chain fails to finalize for more than 4 epochs, an inactivity
leak mechanism will drain ETH away from validators on the wrong chain. The resulting
destruction of ETH allows the majority to regain 2

3 of the votes for the correct chain
again.

2.7.2 LMD-GHOST

Another concern that we need to address is whether it is possible for forks to occur
on the Ethereum blockchain. Earlier we said that a single validator is nominated as a
proposer during every slot, and that only a proposer can add a block to the blockchain.
This seems to imply that the Ethereum blockchain evolves linearly, one block at a time,
with no possibilities of a fork occurring.

However this is not the case. Suppose that the latest block to be added on the blockchain
is block B1. It is possible that a validator proposes a block B2 with B1 as a parent, but

23While Bitcoin has probabilistic finality, where a competing chain could overtake the main chain with
decreasing probability for each block added, Ethereum has deterministic finality, because the finalised
part of the chain cannot be overtaken by another chain unless the network has been compromised with
an attacker controlling 2

3 of the staked ETH.
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this block does not reach all the other validators before the next slot starts. If the next
validator has not seen B2, it will think that the validator at the previous slot did not
propose a block on time. Hence it will propose block B3 with B1 as a parent. The result is
that we have a fork on the chain. The third slot comes along and the next validator sees
both the chain ending in B2 and the chain ending in B3. At this point it has to choose
which chain to follow, and to do so it needs a fork-choice rule. The fork-choice rule used
in Ethereum is called LMD-GHOST24.

Figure 5: A fork has occurred on the Ethereum blockchain.

LMD-GHOST will first identify the last block which was finalized by Casper-FFG. This
will form the root of the tree used to make the fork-choice. The algorithm will then look
at the children of this block, and choose the subtree with the most weight. The weight of
a subtree is the sum of votes which have been attested on the blocks which make up the
subtree. If there is a tie between the weight of two subtrees, the subtree whose root block
has the lower hash is chosen to break the tie. This process is then repeated, until a block
with no children is reached. This block is the head of the blockchain, and the next block
is added to it. This is known as the GHOST rule. The LMD rule says that only the latest
attestation from each validator is counted when computing the votes for a subtree. Thus
within a subtree, we only count the votes for the deepest block a validator has attested
so far. In this way we avoid double counting of votes when calculating the weight of a
subtree.

In our motivating example above a fork was caused by an honest validator. However a
fork can also be caused by a malicious validator. In fact, there are several ways in which
a malicious validator could cause a fork in Ethereum:

• A validator could sumbit two different blocks when it is the proposer.

• A validator could withhold a block when it is the proposer, and release the block
shortly after its slot has ended.

• A validator could attest to a block which is not on the main chain.

• A validator could simultaneously attest to blocks on the main chain and to blocks

24LMD-GHOST stands for Latest Message Driven, Greediest Heaviest Observed Subtree.
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Figure 6: The block B1 is the last finalized block. The subtree with root B4 has more
weight than the subtree with root B2. After B4 is chosen, the leaf block with
most votes is B5. So B5 is the head of the blockchain, and the new block B7 is
added after B5.

off the main chain.

As one can see the problem is not a trivial one and all of these scenarios had to be
considered when Ethereum’s consensus algorithm was being designed.
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3 Applications

In this section we will be discussing some sample standards and protocols which can be
builton the Ethereum Blockchain. This section assumes that you have already covered
the Solidity language. When a new blockchain application is proposed, it is often
described in an Ethereum Improvement Proposal (EIP) or in a white paper issued by the
team building the application (often known as a protocol).

3.1 ERC-20

ERC-2025 is a fungible token standard on the Ethereum blockchain, meaning that each
token created using this standard is identical to every other token of the same type. The
standard defines a set of functions that an Ethereum smart contract must implement to
create and manage tokens. There are many ERC-20 compliant tokens on the Ethereum
blockchain, such as USDC, DAI, LINK and UNI.

There are three main use cases for ERC-20 tokens:

• Currency Tokens: These act as decentralized digital currencies, designed to be a
store of value and medium of exchange, similar to traditional fiat currencies but
operating on the Ethereum blockchain.

• Utility Tokens: These tokens are used to provide access to a specific product or
service within a decentralized platform, often functioning as a payment method
for using the platform’s features.

• Security Tokens: These tokens represent ownership in an external asset, such as
shares in a company or in a bond.

• Stablecoins: These are pegged to the value of a stable asset, such as a fiat currency
(e.g., USD), to minimize volatility and provide a stable medium of exchange.

One interesting thing we can do with ERC-20 tokens is to wrap the native ETH token
into the ERC-20 token WETH. This allows us to manipulate ETH as if it were an ERC-20
token and avoids protocols having to have two kinds of logic to deal with Native tokens
and ERC-20 tokens.

The key idea behind an ERC-20 token is to have a balances mapping, which represents
the amount of tokens owned by an address at a given time.

mapping(address => uint256) balances

25https://eips.ethereum.org/EIPS/eip-20
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The contract allows a user who owns some of the tokens to transfer these to another user
through a transfer function.

transfer(address to, uint256 value)

The transfer is achieved by updating the balances mapping, subtracting the funds from
the balance of the first user and adding them to the balance of the second user.

Another key piece of functionality which the contract supports is to allow a user to
approve another user to move funds on their behalf. This is achieved through the approve
function.

function approve(address spender, uint256 value) public
returns (bool success)

In order to keep track of approvals we use the following mapping. The first address is
the approver, and the second address is the person being approved. The third parameter
is the amount being approved.

mapping(address => mapping(address => uint256)) approvals

When approve is called, it will update the above mapping. This allows the person who
was approved to move funds on behalf of their owner, using the following function,
which updates the balances mapping accordingly.

function transferFrom(address from, address to, uint256 value) public
returns (bool success)

ERC-20 tokens will also have a contract variable which keeps track of the total number
of tokens in circulation.

uint256 totalSupply

This totalSupply is updated whenever tokens are minted or burned, although this logic
will be specific to the token in question. The variable can also be used for other purposes,
such as putting a cap on the maximum amount of tokens which can be minted.

3.2 NFTs

ERC-72126 is a standard for creating non-fungible tokens (NFTs) on the Ethereum blockchain.
Unlike ERC-20 tokens, which are fungible, each ERC-721 token is unique and represents

26https://eips.ethereum.org/EIPS/eip-721
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ownership of a specific asset. This standard defines a set of rules that enable NFTs to be
transferred, managed, and tracked on the Ethereum blockchain.

ERC-721 tokens have a wide range of use cases due to their non-fungible nature, making
them ideal for representing unique digital assets:

• Digital Art and Collectibles: ERC-721 tokens are widely used to represent unique
digital artworks or collectibles.

• Gaming: In-game assets, such as rare items, skins, or virtual land, are represented
by ERC-721 tokens, providing players with true ownership and the ability to trade
or sell these assets outside the game.

• Tokenizing Real-World Assets: ERC-721 tokens are also used to represent real-
world assets like real estate or luxury goods, enabling ownership proof, traceability,
and transferability on the blockchain.

The key idea behind an ERC-721 contract is to represent each non-fungible token by a
number, and then keep track of the address of the owner of that token. This is achieved
through the owners mapping.

mapping(uint256 => address) owners

In order to link the token to some real world asset, we will also have a contract variable
called baseURI, usually immutable and initialised at deployment time.

string baseURI

By adding the baseURI to the token number, we can construct the URL which points
to the asset in question, for example an image of the digital art identified by the token
number.

Similarly to ERC-20 tokens, the contract will also support functionality to transfer a
token number from one owner to another. It will also support approvals for specific
tokens as well as the associated transferFrom functionality.

One problem with this design is that if a user owns many assets, and wants to delegate
the ability to transfer these assets to some other user, then the first user will will have to
approve each asset individually, which will be expensive. To enable this use case, NFT
contracts have the concept of an operator, which is an address enabled to transfer any of
another user’s assets.

We can keep track of operator approvals through the operatorApprovals mapping. The
first parameter is the owner of the assets, the second is an address which represents a
potential operator, and the third is a flag representing whether that operator is approved
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to manage the assets of a given owner.

mapping(address owner => mapping(address operator => bool)) operatorApprovals

An owner can do a bulk approve to an operator through the setApprovalForAll function,
which will update the operatorApprovals mapping.

function setApprovalForAll(address operator, bool approved) public

Needless to say, when transferFrom is called, it will check whether the caller is approved
to transfer that asset in the traditional way, or whether it has been bulk approved to
manage the owner’s assets as an operator.

3.3 Decentralised Lending

We will now explore an important DeFi protocol, called Maker. The field of DeFi stands
for decentralised finance, and is one of the major usecases of blockchain technology. The
main idea behind DeFi is to take use cases in traditional finance (such as Exchanges, In-
surance and Lending) and to decentralise them by the deploying them on the blockchain
and have smart contracts automate the process as much as possible. Some advantages of
DeFi include removing middlemen from the process, reduced costs to operate a service,
providing financial services to those excluded from using them and potential ownership
of the service by its own users.

In this section we shall be describing the Maker protocol27, which is decentralised
lending protocol. Using Maker you can obtain a loan denominated in the DAI token.
The DAI token is a stablecoin, meaning that it tries to keep a price peg (be tradable 1:1)
with the US Dollar (USD), instead of experiencing the volatility of the crypto market. By
issuing credit in a stablecoin, Maker gives you a stable asset which you can then use for
other purposes, including other DeFi applications.

In order to obtain a loan from Maker, you have to deposit some collateral with the
system, such as ETH, into what is called a Collateralized Debt Position (CDP, or Vault).
This is similar to obtaining a loan to buy a house (the house is collateral and can be
repossessed if you don’t pay the loan back to the bank). Of course, once you repay the
loan back, you will get back access to your ETH.

Now ETH is not a stable coin, and its price in USD is thus volatile. Therefore, if the price
of 1 ETH happens to be 2334 USD, the Maker protocol cannot issue you 2334 DAI in
return for taking the 1 ETH as collateral. This is because the protocol has to mantain a
margin of safety for its loan.

27https://makerdao.com/en/whitepaper/
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Every type of collateral in maker, will have a collateralisation ratio associated with it,
representing the risk of using that asset as a collateral. For instance, if the collateralization
ratio for ETH is 150%, we have to provide 150 USD worth of ETH to obtain a loan worth
100 USD of DAI.

The collateralisation ratio is defined as follows:

Collateralization Ratio =
Collateral Value

Loan Value

Therefore, with 1 ETH we are can only get a maximum of 1
1.5 × 2334 = 1556 DAI. At

this point you may be asking yourself what’s the point of locking up your 1 ETH with
Maker, to not even get back an equivalent amount of DAI. The answer is that you are
only giving up control of your ETH temporarily (you will still be able to enjoy any
positive price appreciation when you repay the loan and get back your collateral). In the
meantime, you can use the extra 1556 DAI to invest in and obtain the return of some
other DeFi protocol. Another reason is that you can use this loan to acquire more ETH
and then repeat the process as many times as you like, multiplying your exposure to
positive ETH volatility. This concept is called leverage.

In reality, you should never borrow the maximum amount. Since the price of ETH can
go down, the collateral value can also go down, which means that the size of the loan
which that collateral can support can also go down. If the loan value which can be
supported goes below the amount which was actually loaned out to you, your position
is now under-collateralised and will be liquidated by the protocol. This involves Maker
selling off your ETH for DAI. This DAI is then burned (with the effect that the loan has
been effectively cancelled). If more DAI is raised than needed to repay the loan, the
excess is returned to the user. The flipside of this scenario is that the ETH price goes up,
allowing you to borrow even more DAI because your collateral value has increased in
this case.

Of course, in return for taking out a loan you will have to pay some interest. This interest
is calculated at a yearly rate (say 2% every year), but is accumulated in real time, not
at once at the end of the year. This interest is added to the amount which was loaned,
and must be repaid as well in order to unlock the collateral. This interest rate is called a
stability fee, and it plays multiple purposes in this protocol. The interest paid generates
interest for the protocol, but it also plays a major role as a monetary policy took to keep
DAI pegged to the USD.

How does this work? If the value of DAI exceeds the value of the USD, then DAI is
becoming scarce. The protocol lowers the interest rate to encourage borrowers to borrow
more DAI, which mints more DAI in the process, driving the price of DAI down. On the
other hand if the value of DAI is below the value of the USD, then there is too much DAI
in circulation. So the protocol increases the interest rate. This has the effect of making
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borrowers want to close their DAI positions, thus taking DAI out of circulation and
making it more scarce, which increases its price.

The Maker protocol also has a governance function, which allows holders of the MKR
governance token to vote to control certain parameters of the protocol. Governance
is a way to introduce a human decision making element into a protocol driven by
automated smart contract rules. For instance, holders of the MKR token can change
the collateralisation ratios of different collaterals and even influence the stability fee.
Holders of the MKR token are rewarded by the protocol in the following way. The
protocol will use some of the stability fees it has collected to buy back MKR tokens and
make them more scarce, thus increasing the value of MKR tokens. This incentivises
holders of MKR tokens to take decisions which are good for the health of the protocol.

Finally, there could be a disastrous scenario where a sudden collapse in the price of
the collateral occurs faster than positions can be liquidated to make up for the lower
collateral value. In this case, the collateralisation ratio can go below 100%, meaning
that the Maker protocol becomes insolvent. In Emergency Situation, the protocol will
mint more MKR tokens and sell them for DAI. It will then burn this DAI, which is the
equivalent of closing some amount of loans. In this way the remaining collateral is able
to adequately support the remaining outstanding DAI. This loss is of course borne by
the holders of the MKR token, who find that the value of their tokens has been diluted.

In a catastrophic situation, the holders of the MKR token can even trigger an Emergency
Shutdown of the protocol, which pauses the protocol and allows DAI holders to redeem
their tokens for the underlying collateral at a fair global settlement price. This is calcu-
lated based on the value of the collateral at the time of the system shutdown. This helps
to guarantee an orderly winding down of the protocol.
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4 Off-Chain Communication

So far our distributed applications operate in a closed system, and do not interact with
the external world in any way. However, this is far from ideal. For instance, to be useful,
our application may need to obtain data from the real world (such as prices, or the
current temperature outside) and use this as a basis for its computations. In addition,
our application may want to interoperate with another system (an application on another
blockchain, or a traditional application) and thus needs a way to output information to
these systems.

Interactions with the real world will involve traditional software components, which are
often referred to as off-chain components. This can be contrasted with smart contracts,
which are referred to as on-chain components.

4.1 Oracles

Oracles are used to provide data from the real world to blockchain applications. An
oracle is a smart contract which contains three things:

• A contract variable which will be used to store the off-chain data.

• An external setter function which can be called by an EOA to store the off-chain
value in this contract variable.

• A getter function to allow other smart contracts to read the off-chain data known
by the oracle.

Outside of the blockchain, we can then have a traditional application which access the
data periodically (say from an exchange, or a weather station, through its API) and then
updates the oracle contract through its control of the EOA.

Our own smart contract application can then call the oracle through its getter function to
obtain the latest value reported by the oracle. When a value is read from an oracle, the
oracle will often provide additional data, such as the timestamp at which the value was
last updated. The smart contract consuming this value needs to check this timestamp, to
ensure that the value is not so old as to be stale. It should also make some additional
validations, to ensure that the oracle has not failed and is returning some default value
such as a zero price.



ICT3009: Blockchain and Smart Contracts 26

4.2 Events

While oracles are used to provide real-world inputs to the blockchain, a blockchain
application can provide output to the real world by outputting events. Events can then
be read by an off-chain component, as these are stored as part of a transaction’s logs and
can be retrieved from the blockchain. The off-chain component can then execute some
code of its own, or even start another transaction with the same or another blockchain. A
protocol which uses such a mechanism to perform interactions between different chains
is called a cross-chain protocol.

4.3 Centralisation Concerns

An important consideration when interacting with off-chain components is that the sys-
tem becomes less decentralized, since someone is in control of the off-chain component
and everyone else needs to trust it (besides being a single point of failure!).

One solution which is often used to remove this centralisation concern is to use a
decentralised oracle network. This replaces the off-chain component with a network of
nodes, controlled by different individuals.

This network will run its own consensus algorithm. Each component will get the off-
chain data separately and send it to an aggregator node. The aggregator node will
aggregate the various values into a single value (for example by taking the majority
value, or an average).

People running the nodes may also be required to stake some tokens, and may be
slashed if they report a value which is far outside the acceptable range. Such networks
also need to have some mechanism for rewarding honest nodes for the work they
are performing, most often by distributing some token to them (otherwise there is no
incentive to participate in this network). Chainlink Price Feeds are one example of such
a system.
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5 Upgradability

Although smart contracts on the blockchain are typically immutable, they can still be de-
signed with upgradability in mind. This is necessary to address changing requirements,
fix bugs, or improve functionality. This is typically achieved though the use of a proxy
pattern, which separates the contract’s logic from its storage, allowing for upgrades to
the logic without affecting the contract’s state.

In order to implement a proxy pattern we need to split our design into two contracts, a
logic contract and a proxy contract.

The logic contract will contain all the contract variables and business logic required by
the application. However, its contract variables are there to provide structure to the code,
and will not actually be holding any state in production. When an upgrade is required,
we will deploy a new logic contract, but we will not lose the old state, because this is not
held inside the logic contract.

The proxy contract serves as the interface through which users interact with our Dapp.
It will keep a reference to the address of the logic contract currently in use. The proxy
contract does not declare any contract variables and will simply forward any calls it
receives to the logic contract. However the twist here is that it will call the logic contract
using delegate call, and not using a normal call.

What delegate call does is that it allows the proxy contract to execute a function from
the logic contract, but within its own storage space. This means that any state changes
occurring as a result of the function call will be recorded inside the proxy contract, not
the logic contract.

If the logic contract needs to be upgraded, we can simply instruct the proxy to point
to the address of the new logic contract. This means that going forward any call to the
proxy will be forwarded to the new logic contract, and thus the new business logic will
execute in the context of the existing state.

When upgrading contracts, a critical issue to consider is the storage clash problem. Since
both the Proxy and Logic Contracts have the same storage layout, any change in the
layout (e.g., adding or reordering storage variables) in the Logic Contract can result in a
storage clash.

A storage clash occurs when storage variables in the new logic contract conflict with
the proxy contract’s layout. This leads the business logic of the new logic contracts
modifying the wrong variables, when it is delegate called, leading to data corruption in
the proxy contract.

To prevent storage clashes, developers can:
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• Ensure that storage variables remain in the same order in all logic contract up-
grades.

• Use unstructured storage patterns such as reserved storage slots, to avoid conflicts.
This is especially important when our contracts are part of an inheritance hierarchy,
because adding a variable to a contract in the middle of the hierarchy will affect the
storage locations of contracts further down the chain of inheritance. To avoid this,
we can pre-reserve empty storage slots inside contracts which we will inherit from,
allowing us to replace these slots with real contract variables after an upgrade
without affecting contracts further down the inheritance chain.

Only owner accounts should be able to set the address of the new logic contract during
an upgrade (preferably, these accounts should be controlled by a multisig)! If any
user could change the logic of a contract, anyone could point the proxy to a malicious
contract, potentially bringing the system down. In general there is a tension between
decentralisation and upgradability, in the sense that making a system upgradable means
that you have to trust the person with the power to make an upgrade.



ICT3009: Blockchain and Smart Contracts 29

6 Scalability

Ethereum is constrained by relatively low transaction speeds, processing between 12–15
transactions per second (TPS). In comparison, traditional payment networks like Visa
handle approximately 2,000 TPS on average, with a peak capacity of up to 24,000 TPS,
while PayPal processes around 200 TPS. These differences highlight the need for greater
transaction capacity on blockchains to meet demand and reduce transaction fees.

Blockchain scaling, however, is more complex than it may initially appear. One might
assume we could simply reduce the block time from 12 seconds to 6 seconds to double
TPS, or alternatively, double the gas limit while keeping the block times the same.
Unfortunately, both approaches have cascading effects on the decentralization and/or
the security of the network.

These scaling trade-offs are often referred to as the Blockchain Trilemma, a term originally
coined by Vitalik Buterin. The Blockchain Trilemma states that a blockchain can scale any
one of the following three properties relatively easily, but scaling all three simultaneously
is extremely challenging (though not an impossibility, as it is with the CAP theorem):

• Scalability: Increasing the throughput of the network, generally measured in
Transactions Per Second (TPS).

• Security: Strengthening the network against takeover or compromise.

• Decentralization: Distributing control across the widest possible variety of partici-
pants.

To illustrate this concept more concretely, let’s revisit the scaling solution we mentioned
earlier—larger blocks28. What are the consequences of increasing block size? First, larger
blocks require greater processing power to perform state transitions in a timely manner,
and increased bandwidth for propagating larger blocks through the network.

As block size increases, so do computational and bandwidth demands, which in turn
reduces the number of nodes that can participate. The extreme outcome would be
increasing TPS to such a high level that only one node could realistically process it,
effectively eliminating the blockchain’s decentralization—one of its core principles.

An important principle we need to keep in mind is that when a block is added to
the blockchain, all nodes in the network perform the same state transition function.
Increasing the number of nodes participating does not increase the compute capacity of
the network. To make use of these additional nodes we would need a solution which is
compatible with horizontal scaling.

28This approach is actually known as the big block hypothesis
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The original plan to scale Ethereum was known as sharding, which intended to split the
network into 32 sub-networks, where-in validators would process a portion of the chain.
This would decrease the security of each individual shard, however it would increase
the throughput since shards would be processing different transactions.

The sharding proposal was eventually abandoned in favor of the new Rollup centric
scaling solution. The rationale behind this is manifold, with some of the more high-
level concerns being the additional complexity, reduced security of each shard, and the
incompatibility with existing workflows and tooling.

6.1 Rollups

The rollup-centric roadmap aims to scale Ethereum through the use of a separate system
known as a Layer 2 (L2s). Users can submit transactions to the L2 instead of the L1,
and the L2 will mantain its own state and perform its own internal state transitions.
Periodically, the L2 will batch the transactions it has received, and will synchronise
its state will the L1. The core idea here is that L2s can achieve higher transaction
throughputs by relaxing their decentralisation and security parameters, while L1’s
still exert control over certain key L2 functions, thus allowing L2s to inherit security
properties from the L1.

There are two primary types of rollups: Optimistic Rollups and ZK Rollups. Though
they take significantly different approaches, both hinge on solving a central challenge
known as data availability ¬. To understand the broader vision, let’s briefly explore
these two approaches.

6.1.1 Optimistic Rollups

Optimistic Rollups, such as Arbitrum and Optimism, rely on an optimistic assumption:
that state transitions are valid by default. This optimistic finality assumption allows the
chain to process a higher number of transactions, as it does not need to concern itself
with expensive consensus operations.

Blindly trusting the L2 to process the state transition function (STF) correctly is not a
true scaling solution, and we need some mechanism to ensure that this is being done
correctly. Thankfully we have a solution for this called fraud proofs, which allows users
to dispute transitions of the STF and rollback any fraudulent changes ¬.

Two important concepts here are those of sequencer and state root. The sequencer is a
dedicated L2 component which is responsible for batching, ordering and executing
transactions on the L2. For simplicity, we shall assume that the L2 has one designated
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sequencer.29 When the sequencer tries to sync with the L1, it will submit a state root to
the L1, which is a summary of all transactions which have happened on the L2. This is
used to guarantee the integrity of the work done by the L2 and ensure that the L2 does
not submit a false state to the L1.

The Rollup Contract The current state of the rollup is recorded on the L1 by using a
smart contract known as the Rollup contract. This contract has two key responsibilities:

• Accept new state roots from the L2 sequencer

• Rollback state roots if a valid fraud proof is submitted.

Fraud Proofs The sequencer has a very powerful role, as it has sole control over
everything happening on the L2. What would happen if it tried to submit a fraudulent
batch of transactions, say one which included a transaction giving it all of the users
money?

Users can protect themselves from this by submitting something known as a fraud
proof. The general idea behind why fraud proofs work is that the STF is a deterministic
algorithm (ie: for a given input we always get the same output), therefore if we were to
process the same transactions claimed by the L2 and arrive to a different state root then
we would know that the sequencer has submitted a fraudulent batch.

This therefore requires two things. Firstly, users need to have access to all the transactions
that went into a batch, and secondly, we need a trustless mechanism to show that a
batch was processed incorrectly. The former is generally accomplished by taking all the
transactions, compressing them, and posting the data on-chain alongside the state root.
There are also many ways to accomplish the latter, however one general scheme is the
following.

First we compile the state transition function of the L2 to a work on a simple architecture
such as MIPS of RISC-V. Then we implement an emulator for the chosen architecture
on the L1, as a smart contract. In order to sumbit a fraud proof, the user doing this
work will call the emulator with the code of the state transition and the necessary inputs.
The emulator will then execute this code and determine the resulting state root after
this update. If this does not match the state root held in the rollup contract, the smart
contract rolls back the current state root, invalidating the transactions submitted by the
L2 in the process.

29Although different types of sequencing such as decentralised or self-sequencing are also possible.
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Transaction Compression As mentioned above, we need to make the transaction data
for rollup batches available to users for the purpose of allowing them to validate the
transactions and create fraud proofs. Naively posting all the L2 data onto the L1 is not
an ideal strategy, as this would not only be costly, but it would also significantly increase
the rate of state growth on the L1.

Therefore we need to devise a schema to compress the transactions on the L2, before
posting them to L1. Whilst we could use an off-the-shelf compression algorithm, such
as gzip or LZ4, we can actually be significantly more efficient by first modifying our
encoding format to remove as much redundant information as possible.

The following text outlines a simple transaction encoding which achieves almost a 10x
reduction.30.

A simple Ethereum transaction (to send ETH) takes approximately 110 bytes. But using
the aforementioned compression scheme, an ETH transfer on a rollup takes only around
12 bytes. Table 1 about the compression scheme can be found below.

Parameter Ethereum (bytes) Rollup (bytes)
Nonce ~3 0
Gasprice ~8 0–0.5
Gas 3 0–0.5
To 21 4
Value ~9 ~3
Signature ~68 (2 + 33 + 33) ~0.5
From 0 (recovered from sig) 4
Total ~112 ~12

Table 1: Comparison of Ethereum and Rollup Transaction Sizes

• Nonce: The nonce prevents replays. For an Ethereum transaction, the current
nonce of an EOA (e.g., 5) must match the transaction’s nonce. Once processed, the
account’s nonce increments, blocking replay of the transaction. In the rollup the
nonce can be omitted, as it can be recovered from the pre-state; if someone tries
replaying a transaction with an earlier nonce, the signature check would fail since
it would be checked against data that includes the higher nonce.

• Gasprice: A fixed range of gas prices can be used, such as 16 consecutive powers
of two. Alternatively, gas payment could occur outside the rollup protocol, with
transactors paying batch creators through an external channel.

• Gas: Similarly to gas price, total gas can be restricted to consecutive powers of
two, or limited only at the batch level.

30See Vitalik Buterin’s Incomplete Guide to Rollups at https://vitalik.eth.limo/general/2021/01/05/rollup.html
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• To: Rather than a 20-byte address, we use an index (e.g., if an address is the 4527th
added to the L2 state tree, the index 4527 is used).

• Value: The value can be stored in scientific notation, as most transfers only need
1-3 significant digits.

• Signature: BLS aggregate signatures enable aggregation of many signatures into
a single 32-96 byte signature, depending on the protocol. This signature verifies
the entire batch’s messages and senders at once. The ~0.5 in the table reflects a
per-batch signature cost, given limits on signatures that can be aggregated for
single-block verification.

Withdrawals A critical component of L2 systems is a bridge which allows for transfers
of funds between the L1 and the L2 and vice versa. Transfers from L1 to the L2 are
seamless, with a bridging time of around 15 minutes, which is the time required to
achieve L1 finality. Bridging from L2 back to L1, however, takes approximately 7 days.

The reason for this significant delay is the fraud proof mechanism mentioned earlier.
Users cannot submit fraud proofs at any time for any batch, rather they are given a 7 day
window, known as a challenge period, to submit their fraud proofs for a given batch.

If a challenge were to occur, then any transfers that happened, say depositing funds into
the L2 bridge, would be reverted. Therefore to prevent the bridge from losing funds,
and the L2 becoming insolvent, we do not allow users to withdraw funds before the
challenge period is closed.

6.1.2 ZK-Rollups

Zero-Knowledge (ZK) Rollups share many similarities with Optimistic Rollups. The
use a rollup contract on the L1 to store the current state root, the L2 posts batches of
transactions to the L1, and there is a bridge between the L1 and L2 to handle fund
transfer. The key distinction between the two lies in their finality mechanism.

ZK-Rollups utilize either ZK-STARKs or ZK-SNARK to perform what is known as
verifiable computation (VC). The specific differences between STARKs and SNARKs are
beyond the scope of this unit, but VC provides a reliable way to prove that a certain
computation was completed correctly.

The zero-knowledge properties of these techniques isn’t something we particularly care
about when implementing rollups, and we mainly rely on their ability to produce short
proofs. It should be noted however that we do very much still need to send transaction
data from the L2 to the L1, because of issues related to data availability.
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Verifiable Computing One of the original motivations for VC was distributed com-
puting networks, such as the Berkeley Open Infrastructure for Network Computing
(BOINC). BOINC enables individuals to donate a portion of their hardware resources
to a global distributed computing network. You might have heard of a similar project,
Folding@Home, which performs protein folding simulations to support medical re-
search, including cancer and drug development. These systems operate by assigning
each computer a unique simulation to run, then collecting a large dataset of results to
analyze for significant patterns.

Now, suppose we wanted to reward participants for their contributions, thus incentiviz-
ing more people to offer their computing power. If we simply paid users for submitting
results, some malicious actors might send back random, meaningless data as quickly
as possible just to earn rewards. This would undermine the entire initiative, wasting
resources on useless data. The only way to verify that a simulation was run correctly
would be to rerun it ourselves, defeating the purpose of outsourcing the computations.
Keep this analogy in mind as it illustrates the usefulness of verifiable computation.

What VC enables us to do is to take our program (in this case, the simulation software)
and transform it into something known as a circuit. We can then execute this circuit with
our inputs, and it will return the same outputs as the original program. So far, this may
sound convoluted, as we have simply transformed our program from one representation
to another before executing it. However, the key insight with circuits is that we can take
an execution trace of the circuit and highly compress it using advanced mathematics. We
can then send this compressed execution trace along with the output to the other party.

This compressed execution trace allows any party with the original circuit to verify
that the program was indeed executed and that the provided output was derived from
the given inputs using the program. Crucially, verifying this proof is much faster than
re-executing the original program. For example, if verification is 10 times more efficient,
then a 4-core machine could verify outputs as if they were generated by a 40-core
machine. This scalability is precisely what makes verifiable computation so valuable in
a distributed supercomputer setting.

Using Zero-Knowledge Proofs for State Transitions ZK-Rollups make use of verifiable
computation by applying it to their state transition function (STF). Instead of submitting
a state root, and waiting 7 days until someone disproves it, the L2 instead instead
publishes the state root and a proof to verify that the state root was calculated correctly.
This proof can even be verified on-chain inside a smart contract, which gives us 100%
certainty that the state transition was performed correctly.

It should be noted however that the proof by itself is not enough. What if the L2
sequencer were to disappear? We could elect a new sequencer to pick up where the last
one left off, however the new sequencer doesn’t know the entire state. When we execute
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transactions on the L2, we make changes to the state trie, a balance here, a storage value
there. Without knowing these values we cannot process any new transactions. Therefore
either the transactions or the state updates must also be posted alongside the proof.

Table 2 shows a comparison between Opimistic Rollups and ZK-Rollups.

6.1.3 State Growth, Blobs and the Data Availability Problem

Regardless of the rollup solution chosen, we need to make some amount of data available
to the public, so as to allow people to recreate the state of the L2 in case it goes down.
Initially this was achieved by having the sequences post "bogus" transactions, where-in
they send 1 Wei to a specified account, and put all the data they need to make available
as calldata.

Whilst this sounds like a fine solution, it causes issues for state growth. We mentioned
earlier that as we increase the compute requirements of the network, we decrease the
decentralization of it. Storage is a measure of compute like any other, so a rapidly
growing state will cause some problems.

We know that for optimistic rollups, we actually only need to keep the transaction data
around for 7 days, the length of the contest period. What if there were some temporary
store of data we could use for Ethereum?

This is the central idea behind blobs, originally detailed under the proto-danksharding
proposal (EIP 4844). The entire EIP is quite complicated, but essentially we make a
handful of 1MB blobs available for purchase at each slot of the Ethereum chain. These
blobs are an arbitrary storage area, which is persisted for 2 weeks on the Ethereum chain.
After those 2 weeks nodes are no longer required to store the data, and are free to delete
it.

The advantage of this approach is that we only suffer a known constant storage overhead,
which will not be added to the permanent space. Assuming 3 blobs per slot, and 12s per
slot, in 2 weeks we would need to store an additional 300GB of storage space. Whilst
this is quite a bit of data, node operators do not incur that much of an additional cost to
store it, and they also only incur this cost once as the space is "rolling".
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Property Optimistic Rollups ZK Rollups
Fixed gas cost per
batch

~40,000 (a lightweight transac-
tion that mainly just changes
the value of the state root)

~500,000 (verification of a ZK-
SNARK is quite computation-
ally intensive)

Withdrawal pe-
riod

~1 week (withdrawals need to
be delayed to give time for
someone to publish a fraud
proof and cancel the with-
drawal if it is fraudulent)

Very fast (just wait for the next
batch)

Complexity of
technology

Low High (ZK-SNARKs are very
new and mathematically com-
plex technology)

Generalizability Easier Harder (ZK-SNARK proving
general-purpose EVM execu-
tion is much harder than
proving simple computations,
though there are efforts (e.g.,
Cairo) working to improve on
this)

Per-transaction
on-chain gas costs

Higher Lower (if data in a transac-
tion is only used to verify,
and not to cause state changes,
then this data can be left
out, whereas in an optimistic
rollup it would need to be
published in case it needs to
be checked in a fraud proof)

Off-chain compu-
tation costs

Lower (though there is more
need for many full nodes to
redo the computation)

Higher (ZK-SNARK prov-
ing especially for general-
purpose computation can be
expensive, potentially many
thousands of times more ex-
pensive than running the com-
putation directly)

Table 2: Comparison of Optimistic Rollups and ZK Rollups
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6.1.4 Rollup Stages and Risk Analysis

Rollups can be categorized into various ‘stages’, determined by a number of security
properties they satisfy, which indicate how centralised or decentralised the rollup is.
The initial work to formalise this was spearheaded by L2Beat, which developed a
comprehensive system for breaking down the different security properties of rollups.

The security properties considered by L2Beat are the following:

• Data Availabilty: Whether the data required to construct the state/proofs is pub-
lished on-chain

• State Validation: Whether fraud proofs or zk proofs are being used
• Sequencer Failure: Whether users can sequence their own transactions, or whether

they can force the sequencer to include their transactions
• Proposer Failure: Whether users can post their own state roots and withdraw their

funds from the L2
• Exit Window: Whether the system is either not upgradeable or upgrades to the

system have enshrined delays to allow users to exit

Using these security properties, L2Beat categorises rollups into 3 stages:

• Stage 0 — Full Training Wheels: At this stage, the rollup is effectively run by the
operators. Still, there is an source-available software that allows for the reconstruc-
tion of the state from the data posted on L1, used to compare state roots with the
proposed ones.

• Stage 1 — Limited Training Wheels: In this stage, the rollup transitions to being
governed by smart contracts. However, a Security Council might remain in place
to address potential bugs. This stage is characterized by the implementation of a
fully functional proof system, decentralization of proof submission, and provision
for user exits without operator coordination. The Security Council, comprised
of a diverse set of participants, provides a safety net, but its power also poses a
potential risk.

• Stage 2 — No Training Wheels: This is the final stage where the rollup becomes
fully managed by smart contracts. At this point, the proof system is permissionless,
and users are given ample time to exit in the event of unwanted upgrades. The
Security Council’s role is strictly confined to addressing soundness errors that can
be adjudicated on-chain, and users are protected from governance attacks.

At the time of writing, November 2024, Arbitrum and Optimism have reached stage 1 as
Optimistic Rollups and ZKSync has reached stage 1 as a ZK-Rollup.

https://l2beat.com/scaling/summary
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7 Appendix

7.1 Merkle Patricia Tries

Ethereum uses Merkle-Patricia tries 31 to store certain items of information, such as the
state trie.

A Merkle-Patricia trie can be seen as an optimisation of a data structure known as a radix
tree, which is a special case of a prefix-tree. In addition this data structure is augmented
with functionality found in Merkle trees.

Thus to explain the concept of a Merkle Patricia Trie, we will have to first understand
Merkle trees, then Prefix Trees, and then Radix Trees. Then we will finally combine these
concepts into a Merkle-Patricia Trie.

7.1.1 Merkle Tree

Merkle trees are a tree based data structure, where data is stored in the leaves, and leaves
can be accessed by taking paths through the branches of the tree. The main innovation
in Merkle trees lies in their use of a hashing function to both guarantee the integrity of
the tree as well as to allow efficient verification of whether a piece of data is part of the
data structure or not.

A hashing function is a one-way function, which takes an arbitrary amount of data in
and returns a fixed size piece of data known as a digest. Given a digest it should not be
possible to reverse the function and retrieve the original data32. The security properties
of hash functions are determined by their construction, and are usually classified by the
size of the output digest.

In a Merkle tree, data is stored in the leaves, with each non-leaf (branch) node containing
a hash of its child nodes. If h denotes the hash function, we can visualise a Merkle tree
as follows:

31Patricia stands for Practical Algorithm To Retrieve Information Coded in Alphanumeric.
32There are some other important security properties which hashing functions need to satisfy. The one

mentioned above is called pre-image resistance. There are also second pre-image resistance, collision
resistance, and pseudo-randomness



ICT3009: Blockchain and Smart Contracts 39
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Figure 7: A Merkle Tree

Let us denote the root of the tree as Nr and all the other nodes as Ns, where s is a binary
string. Each bit of the binary string will represent taking either the left or right path
from the root, read from left to right. For instance N000 represents the left most leaf,
N111 represents the right most leaf, and N011 represents the node with the value 3 in the
diagram.

The value of the root Nr (in this case: h(h(h(0, 1), h(2, 3)), h(h(4, 5), h(6, 7)))) is called
the root hash, and it can be used to summarise the entire tree.

Importantly, none of the leaf values can change without changing the root hash of the tree,
and thus knowledge of the root hash prevents tampering with the tree. For instance, if we
wish to replace the leftmost node of the tree with a value x ̸= 0, we would have to find an
x such that h(h(h(x, 1), h(2, 3)), h(h(4, 5), h(6, 7))) = h(h(h(0, 1), h(2, 3)), h(h(4, 5), h(6, 7))),
which is computationally infeasible.

Using this root hash we can also prove that a certain item of data lies in a particular
leaf node of the tree. We can also do so efficiently, in the sense that we do not need to
reproduce the entire tree to show that this is the case. Instead, we can provide a short
proof of this fact. To do so we need to provide the root hash as well as a number of
intermediate nodes which enable to compute the hashes leading from that leaf node to
the root of the tree.

For instance, assuming that we have already shared the root hash with someone, proving
that N000 = 0 to that person only requires us to share the following, rather than all the
data in the leaves.

• N000 = 0
• N001 = 1
• N01 = h(N010, N011)
• N1 = h(h(N100, N101), h(N110, N111))
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The key insight here is that nodes N01 and N1 are able to summarise the values in their
subtrees thanks to the hash digest.

If we assume a 32 byte word size, N01 saves 32 bytes33, and N1 saves 96 bytes34. Therefore
our proof that N000 = 0 has been compressed from sharing 256 bytes to sharing 128
bytes, saving 50% of data transmission costs. It is trivial to see how scaling this system
up results in even more data savings.

7.1.2 Prefix Trees, Radix Trees and Patricia Tries

Prefix Trees, sometimes referred to as tries, are a tree based data structure optimised for
efficient storage and search of data. Consider the following two diagrams, which show
three items of data (cat, car and dog) stored in a binary tree and a prefix tree respectively.

cat

car dog

Figure 8: Binary Tree

c

a

#t #r

d

o

#g

Figure 9: Prefix Tree (Trie)

In the binary tree on the left, each node contains a value along with two pointers to its
left and right children. To search for an element in the tree, we can use binary search
until we find the desired element.

One drawback of this storage method is data duplication. For example, the values "cat"
and "car" share the letters "c" and "a", or more specifically the prefix "ca". In contrast, the
prefix tree on the right stores a single letter in each node. Whilst this results in using
more nodes, the storage cost is amortized because the letters "c" and "a" are only stored
once.

In order to see the true benefit of prefix trees, one has to consider larger datasets. The
space savings in a prefix tree increase as the number of items increase, since we find

33two 32 byte elements, summarised into 32 bytes
34four 32 byte elements, summarised into 32 bytes
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more common prefixes. The search performance of a prefix tree is slightly different from
that of a tree as it is O(n) in the length of the key, whereas trees are O(log n) in the
number of elements. As the number of elements increases, the performance of the prefix
tree becomes more appealing.

From the representation above you may have noticed that our encoding for the word
"dog" is rather inefficient. We do not need a node for each letter if we are only represent-
ing one word, as we do not have any common prefixes with this word.

c

a

#t #r

d

o

#g

Figure 10: Prefix Tree (Trie)

ca

#t #r

#dog

Figure 11: Radix Tree (Trie)

A radix tree resolves this problem by merging single child nodes with their parent. There
are some disadvantages to this approach, namely that inserting in or updating the tree
may require splicing nodes, however we do save a significant amount of space and
improve search performance (in the practical case, not in computational complexity
terms).

Patricia Tries are a special case of the Radix Tree. In this case keys are encoded in binary
and each node is either a zero or one value from the keys stored in the trie.

7.1.3 Ethereum’s Merkle-Patricia Trie

We now have all the building blocks to understand Merkle-Patricia Tries as they are
used in Ethereum.

Similarly to Merkle Tree, the leaves of the Merkle-Patricia Trie will be the ones to hold
the data (for example Ethereum accounts). All other nodes will keep a hash of their
respective subtrees.

On the other hand, from the Patricia tries we take the concept of being able to being
able to lookup these leaves using a key (often an identifier, such as the address of the
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account). We store this key in the intermediate nodes of the tree, forming a path from
the root of the tree to the leaf nodes. These paths are stored exploiting the optimisations
which a Radix tree makes available. Instead of encoding the keys in binary like a normal
Patricia tree, we encode them in hexadecimal, since this is the perfect format for storing
addresses (which are represented as 40 hexadecimal values).

The resulting Merkle-Patricia trie has three types of nodes:

• Branch Nodes - Branch nodes consists of a 16 element array corresponding to the
hexadecimal characters from 0 to F. These point to other nodes in the tree. They
also contain the hash of the node’s subtrees.

• Extension Nodes - Extension nodes function as radix-optimized nodes within
the trie. They are used when a branch node has only one child node. Instead of
having a long sequence of nodes, this is compressesed into an extension node.
The extension node holds the prefix which it is representing, and the hash of its
subtrees.

• Leaf Nodes - Leaf nodes contain the data of the tree.

Branch Node
Pointers[16]

Hash

Branch Node
Pointers[16]

Hash

Extension Node
Prefix: abc

Hash

Leaf Node
Key: abcd

Value: data1

d

bc

Leaf Node
Key: af

Value: data2

f

a

Extension Node
Prefix: bce

Hash

Leaf Node
Key: bcef

Value: data3

f

bce

Figure 12: A Merkle Patricia Trie with 3 leaf nodes. The annotations on the edges are for
readability only. So is the Key inside the leaf node.
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7.2 Cryptography

Cryptography underpins much of modern infrastructure and is crucial to blockchain
technologies. In this course, we won’t dive into the rigorous mathematical theory behind
cryptography—that requires an entire course on its own. Instead, these next sections
will introduce key cryptographic building blocks and provide an intuition for how and
why they work.

A central concept in cryptography is computational infeasibility, the idea that certain tasks
require so much computational power that they are practically impossible. A simple
analogy is the lottery: while it’s not impossible to win, it’s economically infeasible to
guarantee a win by purchasing enough tickets.

For example, if a lottery ticket has a one in a million chance of winning (0.0001%), buying
more tickets increases your odds, but at a cost. If I have $5000 and tickets cost $2, I can
buy 2500 tickets and increase my odds to 0.25%. Even then, the likelihood of winning is
low, and I’ve used all my resources. With $2 million, I might boost my odds to 50%, but
still have no guarantee of winning (and will still not recoup my losses).

Computational infeasibility operates in a similar way. Imagine I choose a random 64-bit
number, and you attempt to guess it. You would have a 1 in 264 chance of guessing
correctly on the first try. Let’s say you have a 4.0 GHz CPU and can guess one number
per cycle, allowing you to guess approximately 109 numbers per second, or 232 numbers.
It may seem like you’re covering significant ground, but that’s not the case.

After two seconds, you’ve guessed 233 numbers. Each increment of the exponent repre-
sents a doubling, so reaching 263, which is half the search space, would take:

263

230 = 233 seconds ≈ 68 years.

The number of bits in a number determines how computationally feasible it is to brute-
force. As the bit length increases, so does the time required to break it by brute force.
While we can accelerate this with better hardware like GPUs or using parallel processing,
today’s rule of thumb for secure systems is to use at least 80 bits of security, with 128
bits being more commonly recommended. In post-quantum contexts, this increases to
256 bits, as in the case of Ethereum.

7.2.1 Hash Functions

Hash functions can be viewed as deterministic, one-way compression functions. Their
purpose is to take data of arbitrary length and produce a fixed-size output called a digest.
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This process should be deterministic, meaning that the same input will always result in
the same digest.

There are two primary types of hash functions: regular hash functions and cryptograph-
ically secure hash functions. You may already be familiar with regular hash functions
from data structures like hash maps. A hash function is considered cryptographically
secure when it satisfies the following properties:

• Preimage Resistance: Given an output z, it should be computationally infeasible to
find any input x such that h(x) = z. In other words, the hash function is one-way.

• Second Preimage Resistance: Given an input x1 and its hash h(x1), it should be
computationally infeasible to find any x2 where h(x1) = h(x2).

• Collision Resistance: It should be computationally infeasible to find two distinct
inputs x1 ̸= x2 such that h(x1) = h(x2).

While second preimage resistance and collision resistance might sound similar, they are
distinct due to a concept called the birthday paradox (or birthday attack). The paradox
reveals that although the probability of a specific pair of elements colliding is low, the
probability of any two elements colliding is much higher. This occurs because as more
elements are generated, they must map to a shrinking set of possible values, increasing
the chance of collisions.

In the birthday paradox problem, the probability of n people not having a common
birthday is the following:

P(no shared birthday) = 1 × 364
365

× 363
365

× 362
365

× · · · × 365 − (n − 1)
365

=
n−1

∏
k=0

365 − k
365

In the collision resistance case we have 2m instead of 365, where m is the size of the
digest. As we consider larger groups of inputs n and check whether they have a hash
collision, the probability of this occurring will quickly increase.

Efficiency is also a consideration when using hash functions. For applications that don’t
require security, we aim to balance the distribution of the hash with execution speed.
When a hash collision occurs, we must iterate through all elements mapped to the same
bucket. Regular hash functions strive for efficiency because the cost of scrambling data
(to minimize collisions) may outweigh the benefits, making it cheaper to simply iterate
through the elements.

Cryptographically secure hash functions, on the other hand, prioritize collision resistance
over speed. Highly optimized hash functions can actually reduce security, as adversaries



ICT3009: Blockchain and Smart Contracts 45

may exploit the efficiency to brute force more hashes. While the hash function must
execute in a reasonable time (waiting five minutes for a digest would be impractical),
improving efficiency too much can weaken security by enabling faster attacks.

The security of a hash function is measured by its bit length. Preimage resistance
typically requires 2n operations, while collision resistance requires about 2

n
2 operations.

7.2.2 Asymmetric Cryptography

Asymmetric cryptography, also known as public-key cryptography, is a method of
encryption where two distinct but mathematically related keys are used: a public key
and a private key. Unlike symmetric cryptography, where the same key is used for both
encryption and decryption, asymmetric cryptography uses one key for encryption (the
public key) and a separate key for decryption (the private key).

The public key can be shared freely and is used to encrypt data, while the private key is
kept secret and is used to decrypt the data. This ensures that even if someone has access
to the public key, they cannot decrypt messages without the corresponding private key.

Asymmetric cryptography relies on trapdoor functions, problems which are easy to
compute one way, but hard to compute in reverse. The most common example for
this, and the one used in schemes such as RSA is prime factorization. Given two prime
numbers p and q we can multiply them together to get a new prime number n, this
operation is trivial. Going from a given n into its corresponding p and q requires checking
all the prime numbers up to

√
n.

If we wanted to build a cryptographically secure scheme using the above, we would
need to guarantee at least 128 bits of security. This means that we need to ensure that an
attacker needs to go through at least 2128 values to break our cryptography.

To achieve this, our key length needs to have n bits, such that
√

2n = 2128, which means
that n has to be at least 256 bits. In practice we can break this scheme much more
efficiently, through algorithms such as the General Number Field Sieve (GNFS). To
counter this algorithm, the number of key bits to security bits needs to scale non-linearly,
and 128-bits of security can only be achieved with a 3072-bit key.

There are two key properties that asymmetric cryptography must ensure:

• Confidentiality: Only the holder of the private key can decrypt a message en-
crypted with the public key, ensuring the secrecy of the message.

• Authentication: The private key can also be used to sign a message, and anyone
with the corresponding public key can verify that the message originated from the
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owner of the private key.

These properties make asymmetric cryptography suitable not only for secure message
transmission but also for digital signatures, where the private key is used to sign a
document and the public key is used to verify its authenticity.

7.2.3 Signatures

Signatures have been mentioned numerous times in the text so far, but we have yet
to explain them properly. In practice, they function much like real-world signatures
(though they are actually more secure) and can be used to verify that a particular party
has issued a message.

There are various ways to construct digital signatures, some using symmetric cryptogra-
phy and others asymmetric. With an understanding of encryption and hash functions,
you should be able to conceive of basic schemes for both.

One way to create a signature scheme using asymmetric cryptography is to hash the
message and encrypt the resulting digest as follows:

s = epriv(h(x)).

The receiving party can verify this signature by checking that

e−1
pub(s) ≡ h(x),

where s is the signature and x is the message. If the decrypted signature does not match
the hashed message, then the signature is invalid.

In this notation, the superscript e−1 denotes decryption, while e alone represents encryp-
tion. The subscript indicates whether it is the public key (epub) or the private key (epriv).
It is important to note that for an encryption function, decryption can only be performed
using the complementary key, i.e., e−1

pub(epriv) or e−1
priv(epub).

7.2.4 Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) isn’t a major departure from regular (a)symmetric
cryptography, it simply uses a different trap door function based on the mathematics of
elliptic curves35. The choice for ECC over traditional cryptography lies in its reduced
key size, allowing us to preserve the same security properties whilst being more efficient.
The latter is especially important for lower power devices such as mobile phones.

35The problem is known as the discrete log problem
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7.2.5 BLS Signatures

Boneh-Lynn-Shacham (BLS) signatures are a form of cryptographic signature based on
pairings on elliptic curves, specifically designed to create short, verifiable digital signa-
tures. BLS signatures rely on a mathematical operation called a bilinear pairing, which
maps points on elliptic curves in a way that enables unique functionality, particularly
efficient aggregation and verification of signatures. The full mathematical details of how
this works are beyond the scope of this course.

The main advantage of BLS signatures is that they provide a concise way to allow
multiple signers for a given message. Consider a message m that needs to be signed by
several signers e1, e2, . . . , en. Without aggregation, we would need to produce individual
signatures as follows:

s1 = e1(h(m)), s2 = e2(h(m)), . . . , sn = en(h(m))

If each signature is 32 bytes, transmitting all signatures would require n × 32 bytes of
data. For example, with n as one million (the current number of Ethereum validators),
this would be 32 MB of data!

Ideally, we want a way to compress these signatures while still being able to validate
them. BLS signatures allow us to aggregate both the signatures and the corresponding
public keys so that an aggregated signature can be validated using an aggregated public
key. In essence, we produce:

sa = s1 ⊕ s2 ⊕ · · · ⊕ sn

and an aggregated public key:

epub a = epub 1 ⊕ epub 2 ⊕ · · · ⊕ epub n

such that e−1
pub a(sa) ≡ e−1

pub a(epriv a(h(m))) ≡ h(m). Here, epriv a represents a hypothetical
"super private key" for all combined signers.

In reality, the operations involved are more complex, but this construction gives a
general working model. Under this setup, if we want to prove that a specific set of
signers (e1, e2, . . . , en) all signed a message m, we only need to send m, the aggregated
signature sa, and the list of signers.

The recipient can construct epub a and verify the signature sa. This scheme allows us to
send just one 32-byte signature and a bitmap to indicate the set of signers. The size of
the bitmap field is the length of the validator set, for 1 million validators we would use 1
million bits, or 0.125Mb. With these assumptions we can save 99.6% in data transmission.
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7.3 RANDAO

The RANDAO (Random Number and Distribution Accumulation Oracle) is a critical
part of Ethereum’s consensus layer infrastructure and provides the system with trustless
randomness. Core operations such as choosing which validator gets to be the proposer
and which validators get to attest a slot need to be random for the sake of security36.

The RANDAO is a random value which is updated during each slot of an epoch. During
the first slot, the first proposer determines the RANDAO value Subsequently, during
each slot, that slot’s proposer mixes a new value with the RANDAO value from the
previous slot to generate a new RANDAO value.

Since controlling the RANDAO value can allow a validator to exert some control over
the network, we have to restrict the values which can be proposed by validators, as
well as the way these values are mixed with the current RANDAO value. This can be
achieved through the use of public-private key signatures as follows.

Each validator possesses a public-private BLS key pair which it uses to sign messages at
the consensus layer of the network. When it becomes a proposer, the validator computes
a value called randao reveal by signing the current epoch with its private key. The
corresponding public key is registered with the Ethereum network and is known by
other validators on the network.

This scheme has three consequences. Firstly, the validator is not able to control the value
of the randao reveal. Secondly the other validators know that the validator didn’t just
make up the value, because the signed message can be verified using the public key.
Thirdly the other validators cannot know the value being generated in advance as this
would require knowledge of the proposer’s private key.

Once the randao reveal value has been computed by the proposer, it is hashed to
compress it down to 256 bits. The resulting value is mixed with the existing RANDAO
value using XOR.

On concern with RANDAO is that the final proposer in an epoch has some control over
the final value. This is because the proposer can compute the upcoming RANDAO value
in advance, and then decide whether it prefers the new RANDAO value or the previous
RANDAO value. If it prefers the new RANDAO value, it will propose a block to change
the RANDAO value. However, if it does not it will not propose a block. The result is
that the previous block becomes the last block of the epoch, and its RANDAO value
becomes the last RANDAO value of the epoch.

The problem is that the RANDAO value of epoch N is used to determine proposers and

36An example of an attack which can be carried out against a predictable system is to mount a DoS attack
to knock out specific validators and take control of a committee
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Figure 13: Combining Randao

Figure 14: RANDAO biasing

validators for each slot in epoch N + 2 37. Being chosen as a proposer has an economic
advantage in terms of rewards and allows the censorship of transactions. In addition
if an attacker is able to control multiple slots (perhaps even by mounting a DoS attack
on intervening proposers), the attacker can also affect the outcome of lottery contracts
(since a slot’s RANDAO value can also be used by some smart contracts as a source
of on-chain randomness). This is a disadvantage of RANDAO which one needs to be
aware of.

37This also means that an attacker cannot mainpulate proposers and validators for epoch N + 2.
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